Egyptian Technology > Egyptian Astronomy

Egyptian Astronomy

Egypt History - Egyptian Chapter Decoration

Background

Chart from Senemut's tomb, 18th dynasty[1]Egyptian astronomy begins in prehistoric times, in the Predynastic Period. In the 5th millennium BCE, the stone circles at Nabta Playa may have made use of astronomical alignments. By the time the historical Dynastic Period began in the 3rd millennium BCE, the 365-day period of the Egyptian calendar was already in use, and the observation of stars was important in determining the annual flooding of the Nile. The Egyptian pyramids were carefully aligned towards the pole star, and the temple of Amun-Re at Karnak was aligned on the rising of the midwinter sun. Astronomy played a considerable part in fixing the dates of religious festivals and determining the hours of the night, and temple astrologers were especially adept at watching the stars and observing the conjunctions, phases, and risings of the sun, moon and planets.Nut, Egyptian goddess of the sky, with the star chart in the tomb of Ramses VIIn Ptolemaic Egypt, the Egyptian tradition merged with Greek astronomy and Babylonian astronomy, with the city of Alexandria in Lower Egypt becoming the centre of scientific activity across the Hellenistic world. Roman Egypt produced the greatest astronomer of the era, Ptolemy (90-168 CE). His works on astronomy, including the Almagest, became the most influential books in the history of Western astronomy. Following the Muslim conquest of Egypt, the region came to be dominated by Arabic culture and Islamic astronomy. The astronomer Ibn Yunus (c. 950-1009) observed the sun's position for many years using a large astrolabe, and his observations on eclipses were still used centuries later. In 1006, Ali ibn Ridwan observed the SN 1006, a supernova regarded as the brightest stellar event in recorded history, and left the most detailed description of it. In the 14th century, Najm al-Din al-Misri wrote a treatise describing over 100 different types of scientific and astronomical instruments, many of which he invented himself. In the 20th century, Farouk El-Baz from Egypt worked for NASA and was involved in the first Moon landings with the Apollo program, where he assisted in the planning of scientific explorations of the Moon.[2]Contents [hide]1Ancient Egypt1.1The First Intermediate Period1.2Greco-Roman Egypt2Arabic-Islamic Egypt3Notes4See also5References6Further reading7External linksAncient Egypt[edit]Plan of a stone circle at Nabta, EgyptEgyptian astronomy begins in prehistoric times. The presence of stone circles at Nabta Playa in Upper Egypt dating from the 5th millennium BCE show the importance of astronomy to the religious life of ancient Egypt even in the prehistoric period. The annual flooding of the Nile meant that the heliacal risings, or first visible appearances of stars at dawn, were of special interest in determining when this might occur, and it is no surprise that the 365-day period of the Egyptian calendar was already in use at the beginning of Egyptian history. The constellation system used among the Egyptians also appears to have been essentially of native origin.The precise orientation of the Egyptian pyramids serves as a lasting demonstration of the high degree of technical skill in watching the heavens attained in the 3rd millennium BCE. It has been shown the pyramids were aligned towards the pole star, which, because of the precession of the equinoxes, was at that time Thuban, a faint star in the constellation of Draco.[3] Evaluation of the site of the temple of Amun-Re at Karnak, taking into account the change over time of the obliquity of the ecliptic, has shown that the Great Temple was aligned on the rising of the midwinter sun.[4] The length of the corridor down which sunlight would travel would have limited illumination at other times of the year.Astronomy played a considerable part in religious matters for fixing the dates of festivals and determining the hours of the night. The titles of several temple books are preserved recording the movements and phases of the sun, moon and stars. The rising of Sirius (Egyptian: Sopdet, Greek: Sothis) at the beginning of the inundation was a particularly important point to fix in the yearly calendar. One of the most important Egyptian astronomical texts was the Book of Nut, going back to the Middle Kingdom or earlier.The First Intermediate Period[edit]Beginning with the 9th Dynasty, ancient Egyptians produced 'Diagonal star tables', which were usually painted on the inside surface of wooden coffin lids.[5] This practice continued until the 12th dynasty.[6] These 'Diagonal star tables' or star charts are also known as 'diagonal star clocks'; in the past they have also been known as 'star calendars', or 'decanal clocks'.[7] These star charts featuring the paintings of Egyptian deities, decans, constellations, and star observations are also found on the ceilings of tombs and temples.'Star clock' method from the tomb of Rameses VIFrom the tables of stars on the ceiling of the tombs of Rameses VI and Rameses IX it seems that for fixing the hours of the night a man seated on the ground faced the Astrologer in such a position that the line of observation of the pole star passed over the middle of his head. On the different days of the year each hour was determined by a fixed star culminating or nearly culminating in it, and the position of these stars at the time is given in the tables as in the centre, on the left eye, on the right shoulder, etc. According to the texts, in founding or rebuilding temples the north axis was determined by the same apparatus, and we may conclude that it was the usual one for astronomical observations. In careful hands, it might give results of a high degree of accuracy.Macrobius Ambrosius Theodosius (floruit 395–423 CE) attributed the planetary theory where the Earth rotates on its axis and the interior planets Mercury and Venus revolve around the Sun which in turn revolves around the Earth, to the ancient Egyptians. He named it the "Egyptian System," and stated that "it did not escape the skill of the Egyptians," though there is no other evidence it was known in ancient Egypt.[8][9]Greco-Roman Egypt[edit]See also: Astrology in Hellenistic Egypt and Greek astronomyAn Egyptian 30th-dynasty (Ptolemaic) terracotta astrological disc at the Los Angeles County Museum of Art.Writing in the Roman era, Clement of Alexandria gives some idea of the importance of astronomical observations to the sacred rites:And after the Singer advances the Astrologer (ὡροσκόπος), with a horologium (ὡρολόγιον) in his hand, and a palm (φοίνιξ), the symbols of astrology. He must know by heart the Hermetic astrological books, which are four in number. Of these, one is about the arrangement of the fixed stars that are visible; one on the positions of the sun and moon and five planets; one on the conjunctions and phases of the sun and moon; and one concerns their risings.[10]The astrologer's instruments (horologium and palm) are a plumb line and sighting instrument. They have been identified with two inscribed objects in the Berlin Museum; a short handle from which a plumb line was hung, and a palm branch with a sight-slit in the broader end. The latter was held close to the eye, the former in the other hand, perhaps at arms length. The "Hermetic" books which Clement refers to are the Egyptian theological texts, which probably have nothing to do with Hellenistic Hermetism.[11]Astronomical ceiling relief from Dendera, EgyptFollowing Alexander the Great's conquests and the foundation of Ptolemaic Egypt, the native Egyptian tradition of astronomy had merged with Greek astronomy as well as Babylonian astronomy. The city of Alexandria in Lower Egypt became the centre of scientific activity throughout the Hellenistic civilization. The greatest Alexandrian astronomer of this era was the Greek, Eratosthenes (c. 276-195 BCE), who calculated the size of the Earth, providing an estimate for the circumference of the Earth.Following the Roman conquest of Egypt, the region once again became the centre of scientific activity throughout the Roman Empire. The greatest astronomer of this era was the Hellenized Egyptian, Ptolemy (90-168 CE). Originating from the Thebaid region of Upper Egypt, he worked at Alexandria and wrote works on astronomy including the Almagest, the Planetary Hypotheses, and the Tetrabiblos, as well as the Handy Tables, the Canobic Inscription, and other minor works. The Almagest is one of the most influential books in the history of Western astronomy. In this book, Ptolemy explained how to predict the behavior of the planets with the introduction of a new mathematical tool, the equant.A few mathematicians of late Antiquity wrote commentaries on the Almagest, including Pappus of Alexandria as well as Theon of Alexandria and his daughter Hypatia. Ptolemaic astronomy became standard in medieval western European and Islamic astronomy until it was displaced by Maraghan, heliocentric and Tychonic systems by the 16th century.Arabic-Islamic Egypt[edit]See also: Astronomy in medieval IslamFollowing the Muslim conquest of Egypt, the region came to be dominated by Arabic culture. It was ruled by the Rashidun, Umayyad and Abbasid Caliphates up until the 10th century, when the Fatimids founded their own Caliphate centred around the city of Cairo in Egypt. The region once again became a centre of scientific activity, competing with Baghdad for intellectual dominance in the medieval Islamic world. By the 13th century, the city of Cairo eventually overtook Baghdad as the intellectual center of the Islamic world.[citation needed]Ibn Yunus (c. 950-1009) observed more than 10,000 entries for the sun's position for many years using a large astrolabe with a diameter of nearly 1.4 meters. His observations on eclipses were still used centuries later in Simon Newcomb's investigations on the motion of the moon, while his other observations inspired Laplace's Obliquity of the Ecliptic and Inequalities of Jupiter and Saturn.[clarification needed (not the title of any work by Laplace)] [12] In 1006, Ali ibn Ridwan observed the supernova of 1006, regarded as the brightest stellar event in recorded history, and left the most detailed description of the temporary star. He says that the object was two to three times as large as the disc of Venus and about one-quarter the brightness of the Moon, and that the star was low on the southern horizon.[13]The astrolabic quadrant was invented in Egypt in the 11th century or 12th century, and later known in Europe as the "Quadrans Vetus" (Old Quadrant).[14] In 14th century Egypt, Najm al-Din al-Misri (c. 1325) wrote a treatise describing over 100 different types of scientific and astronomical instruments, many of which he invented himself.[15]In the 20th century, Farouk El-Baz from Egypt worked for NASA and was involved in the first Moon landings with the Apollo program, where he was secretary of the Landing Site Selection Committee, Principal Investigator of Visual Observations and Photography, chairman of the Astronaut Training Group, and assisted in the planning of scientific explorations of the Moon, including the selection of landing sites for the Apollo missions and the training of astronauts in lunar observations and photography.[2]Notes[edit]Jump up ^ Full version at Met Museum^ Jump up to: a b "Muslim Scientists and Space Exploration - Farouk El-Baz: With Apollo to the Moon - Interview". IslamOnline.Jump up ^ Ruggles, C.L.N. (2005), Ancient Astronomy, pages 354-355. ABC-Clio. ISBN 1-85109-477-6.Jump up ^ Krupp, E.C. (1988). "Light in the Temples", in C.L.N. Ruggles: Records in Stone: Papers in Memory of Alexander Thom. CUP, 473-499. ISBN 0-521-33381-4.Jump up ^ Symons, S.L., Cockcroft, R., Bettencourt, J. and Koykka, C., 2013. Ancient Egyptian Astronomy [Online database] Diagonal Star TablesJump up ^ Symons, S.L. A Star’s Year: The Annual Cycle in the Ancient Egyptian Sky in: Steele, J.M. (Ed.), Calendars and Years: Astronomy and Time in the Ancient World. Oxbow Books, Oxford, pp. 1-33.Jump up ^ Marshall Clagett, Ancient Egyptian Science, Volume 2: Calendars, clocks, and astronomy. Philadelphia: American Philosophical Society, 1995 ISBN 0871692147 p53Jump up ^ Otto E. Neugebauer (1975), A history of ancient mathematical astronomy, Birkhäuser, ISBN 3-540-06995-XJump up ^ Rufus, W. Carl, "The astronomical system of Copernicus", Popular Astronomy, 31: 510–521 [512], Bibcode:1923PA.....31..510RJump up ^ Clement of Alexandria, Stromata, vi. 4Jump up ^ O Neugebauer, Egyptian Planetary Texts, Transactions, American Philosophical Society, Vol. 32, Part 2, 1942, Page 237.Jump up ^ (Zaimeche 2002)Jump up ^ Goldstein, Bernard R. (1965), "Evidence for a Supernova of A.d. 1006", Astronomical Journal, 70 (1): 105–114, Bibcode:1965AJ.....70..105G, doi:10.1086/109679Jump up ^ (King, Cleempoel & Moreno 2002, p. 333)Jump up ^ (King 2004)See also[edit]Ancient EgyptArchaeoastronomyDendera zodiacDecans, Egyptian constellations.Egyptian astronomersEgyptian calendarEgyptian mathematicsHistory of astronomyBabylonian astronomyAncient Greek astronomyMedieval Islamic astronomyNabta PlayaSothic cycleReferences[edit]King, David A. (2004), "Reflections on some new studies on applied science in Islamic societies (8th-19th centuries)", Islam & Science, June 2004.King, David A.; Cleempoel, Koenraad Van; Moreno, Roberto (2002), "A Recently Discovered Sixteenth-Century Spanish Astrolabe", Annals of Science, 59 (4): 331–362, doi:10.1080/00033790110095813Public Domain This article incorporates text from a publication now in the public domain: Chisholm, Hugh, ed. (1911). "article name needed". Encyclopædia Britannica (11th ed.). Cambridge University Press.Further reading[edit]Marshall Clagett, (2004), Ancient Egyptian Science: A Source Book. Volume Two: Calendars, Clocks, and Astronomy, American Philosophical Society, ISBN 0-87169-214-7.Massimiliano Franci, Astronomia egizia, Introduzione alle conoscenze astronomiche dell'antico Egitto, Edarc, Firenze 2010, ISBN 978-88-86428-94-1.External links[edit] Media related to Ancient Egyptian astronomy at Wikimedia Commons.Symons, S.L., Cockcroft, R., Bettencourt, J. and Koykka, C., 2013. Ancient Egyptian Astronomy. [Online database] Available at: .The Egyptians were a practical people and this is reflected in their astronomy[33] in contrast to Babylonia where the first astronomical texts were written in astrological terms.[34] Even before Upper and Lower Egypt were unified in 3000 BCE, observations of the night sky had influenced the development of a religion in which many of its principal deities were heavenly bodies. In Lower Egypt, priests built circular mud-brick walls with which to make a false horizon where they could mark the position of the sun as it rose at dawn, and then with a plumb-bob note the northern or southern turning points (solstices). This allowed them to discover that the sun disc, personified as Ra, took 365 days to travel from his birthplace at the winter solstice and back to it. Meanwhile, in Upper Egypt a lunar calendar was being developed based on the behavior of the moon and the reappearance of Sirius in its heliacal rising after its annual absence of about 70 days.[35]After unification, problems with trying to work with two calendars (both depending upon constant observation) led to a merged, simplified civil calendar with twelve 30-day months, three seasons of four months each, plus an extra five days, giving a 365-year day but with no way of accounting for the extra quarter day each year. Day and night were split into 24 units, each personified by a deity. A sundial found on Seti I's cenotaph with instructions for its use shows us that the daylight hours were at one time split into 10 units, with 12 hours for the night and an hour for the morning and evening twilights.[36] However, by Seti I's time day and night were normally divided into 12 hours each, the length of which would vary according to the time of year.Key to much of this was the motion of the sun god Ra and his annual movement along the horizon at sunrise. Out of Egyptian myths such as those around Ra and the sky goddess Nut came the development of the Egyptian calendar, time keeping, and even concepts of royalty. An astronomical ceiling in the burial chamber of Ramesses VI shows the sun being born from Nut in the morning, traveling along her body during the day and being swallowed at night.During the Fifth Dynasty six kings built sun temples in honour of Ra. The temple complexes built by Niuserre at Abu Gurab and Userkaf at Abusir have been excavated and have astronomical alignments, and the roofs of some of the buildings could have been used by observers to view the stars, calculate the hours at night and predict the sunrise for religious festivals.[citation needed]The Dendera Zodiac was on the ceiling of the Greco-Roman temple of Hathor at DenderaClaims have been made that precession of the equinoxes was known in Ancient Egypt prior to the time of Hipparchus.[37] This has been disputed however on the grounds that pre-Hipparchus texts do not mention precession and that "it is only by cunning interpretation of ancient myths and images, which are ostensibly about something else, that precession can be discerned in them, aided by some pretty esoteric numerological speculation involving the 72 years that mark one degree of shift in the zodiacal system and any number of permutations by multiplication, division, and addition." [38]Note however that the observation that a stellar alignment has grown wrong does not necessarily mean that the Egyptians understood or even cared what was going on. For instance, from the Middle Kingdom on they used a table with entries for each month to tell the time of night from the passing of constellations: these went in error after a few centuries because of their calendar and precession, but were copied (with scribal errors) for long after they lost their practical usefulness or possibly the understanding of them.

Sources

Primary Sources

Secondary Sources

History of Humanity - History Archive Logo
History of Humanity - History Mysteries Logo
History of Humanity - Ancient Mesopotamia Logo
History of Humanity - Egypt History Logo
History of Humanity - Persian Empire Logo
History of Humanity - Greek History Logo
History of Humanity - Alexander the Great Logo
History of Humanity - Roman History Logo
History of Humanity - Punic Wars Logo
History of Humanity - Egypt History Logo
History of Humanity - Revolutionary War Logo
History of Humanity - Mafia History Logo

Warning: mysqli_close(): Couldn't fetch mysqli in /home/humanityhistory/public_html/addons/egypt-history.org/blueprint/templates/html-end.php on line 3